

Returns to investment in PHM: Benin and Mozambique

Munhamo Chisvo

The 1st ALL Africa Post Harvest Congress & Exhibition 28th-31th March 2017, Safari Park Hotel, Nairobi Kenya

Outline

- 1. Study objectives
- 2. Approach
- 3. Findings
- 4. Implications for policy
- 5. Recommendations

Study objectives

- Quantify crop production (maize, beans and cowpeas)
- Quantify post-harvest losses for maize, beans and cowpeas
- Find out the PHLM innovations adoption rate
- Carryout cost-benefit analysis (CBA)
 - hermetic bags
 - metal silos
- Make recommendations on financing

Sources of information

- Official statistics from Ministries of Agriculture
- Research commissioned by Helvetas and FANRPAN
- Internet sources
- Key informant interviews (triangulation)
- Validation workshop (Mozambique)

Cost-Benefit Modelling

- Lifespan of metal silo 20 years (hermetic bag 2 years)
- Assumption project life, 20 years
- Compare treatment (adoption) and counterfactual scenarios
- Compute incremental costs (technology, pesticide)
- Compute incremental benefits (income, savings)

Cost-Benefit Modelling .../2

- Compute the incremental benefits
 - Scenario A: Farm sells at harvest: (LS HS Price) * QTY Preserved
 - Scenario B: Farmer stores and sells later: (LS Price * QTY Preserved)
- >> Scenario B has higher incremental benefits
 >> Scenario A is already prudent, reducing losses by selling early

Cost-Benefit Modelling .../3

 Construct incremental cost and benefit cashflows - 20 years

- Compute discount rate (r) using **Ramsey equation**
- Compute cost-benefit indicators
- Conduct sensitivity analysis

Ramsey Equation

• $r = \rho + \mu g$

Whereby:

- **r** is the discount rate;
- ρ is the rate at which people discount future over present consumption assuming that income is fixed. (ρ) is the product of two elements namely the <u>risk of catastrophe wiping out the gains from a</u> <u>programme (L)</u> and the <u>rate of pure time preference (δ);</u>
- δ is the **pure rate of time preference** consumers are impatient and that because there is a chance they could die, would rather consume today not in future;
- μ is the **rate of per capita consumption growth**; and
- g is the elasticity of the marginal utility of consumption (the percentage fall in the marginal utility when consumption increases by one per cent).

Discount rate: Benin Example

$\rho = 0.8\% + 0.5 = 1.3\%$

- Risk of catastrophe (L) "crude death rate" 8 per 1,000 (0.8%)
- Rate of pure time preference assumed to be 0.5 (DFID Green Book)

μ=**2**

Rate of per capita consumption growth (Dasgupta, Partha, 2006 estimates: 2 to 4)

g=5%

- Elasticity of marginal utility of consumption (proxy is GDP growth rate)
- Growth rate for Benin estimated at 5% per year for the foreseeable future
- r = 1.3% + 2*5% = 1.3% + 10% = 11.3%
 - Rounded off to **12%**, more conservative, rain-fed agriculture

Cost-Benefit Indicators Computed

- Net Present Value (NPV)
- Benefit Cost Ratio (BCR)
- Internal Rate of Return (IRR)
- Payback Period
- Breakeven Point

Net Present Value

For calculation of NPV the following formula was used:

$$\mathrm{NPV}(i,N) = \sum_{t=0}^N rac{R_t}{(1+i)^t}$$

Where:

t – is the time of the cash flow

i – is the discount rate, i.e. the return that could be earned per unit of time on an investment with similar risk.

 R_{t-} is the net cash flow i.e. cash inflow – cash outflow, at time t.

Sensitivity Analysis Assumptions

20% less benefit from base case

• 20% more benefit from the base case

- 14% discount rate (more risky environment)
- 10% discount rate (assuming less risky environment)

FINDINGS

Validation Meeting Mozambique , March 2017

Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN)

www.fanrpan.org

Benin Indicator Values – H. Bags (Scenario A: Sells)

Indicator	Maize	Beans	Cowpeas
Net-Present Value (CFAF)	-8.43	214.30	93.73
Benefit to Cost Ratio	0.66	2.39	1.61
Internal Rate of Return (%)	Negative	>10,000	465
Payback period (Years)	N/A	5	8
Breakeven point (%)	N/A	42	62

Benin Indicator Values – H. Bags (Scenario B: Stores)

Indicator	Maize	Beans	Cowpeas
Net-Present Value (CFAF)	209.32	986.87	708.63
Benefit to Cost Ratio	1.95	7.41	5.6
Internal Rate of Return (%)	>1,000	>1mln	>500,000
Payback period (Years)	7	1	5.6
Breakeven point (%)	51.5	13.5	18

Benin Indicator Values – Silo (Scenario A: Sells)

Indicator	Maize	Beans	Cowpeas
Net-Present Value (CFAF)	34.3	257.03	136.46
Benefit to Cost Ratio	1.31	3.31	2.28
Internal Rate of Return (%)	18	66	37
Payback period (Years)	11	3	5
Breakeven point (%)	76.5	30.2	45

Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN)

Benin Indicator Values – Silo (Scenario B: Stores)

Indicator	Maize	Beans	Cowpeas
Net-Present Value (CFAF)	318.45	1,029.06	751.36
Benefit to Cost Ratio	3.87	10.26	7.76
Internal Rate of Return (%)	89	>1,700	1,685
Payback period (Years)	3	1	2
Breakeven point (%)	26	9.9	13

Mozambique Values – H. Bags (Scenario A: Sells)

Indicator	Maize	Beans	Cowpeas
Net-Present Value (MZN)	27.31	43,92	12.87
Benefit to Cost Ratio	2.5	3.42	1.71
Internal Rate of Return (%)	>50,000	>50,000	>50,000
Payback period (Years)	3	3	7
Breakeven point (%)	40	29	58.5

Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN)

Mozambique Values – H. Bags (Scenario B: Stores)

Indicator	Maize	Beans	Cowpeas
Net-Present Value (MZN)	43.36	152.60	67.25
Benefit to Cost Ratio	3.55	9.4	4.7
Internal Rate of Return (%)	>50,000	>500,000	>500,000
Payback period (Years)	3	1	2
Breakeven point (%)	28	11	21

Mozambique Values – Silo (Scenario A: Sells)

Indicator	Maize	Beans	Cowpeas
Net-Present Value (MZN)	37.97	54.57	23.53
Benefit to Cost Ratio	6.05	8.26	4.13
Internal Rate of Return (%)	>50,000	>100,000	100
Payback period (Years)	2	1	2
Breakeven point (%)	16.6	12	24.3

Mozambique Values – Silo (Scenario B: Stores)

Indicator	Maize	Beans	Cowpeas
Net-Present Value (MZN)	56.83	163.26	67.21
Benefit to Cost Ratio	8.59	22.72	4.7
Internal Rate of Return (%)	200,000	>200,000	>200,000
Payback period (Years)	1	1	2
Breakeven point (%)	11.6	4.5	21.2

Implications of the findings

- PHM technologies are viable
- Viability depends on crop, losses (without), price changes
- Metal silo more viable in long-term
- Start-up costs for metal silo high in ST: 1.5 3 times more
- Farmer incomes increase as a proportion of Agri-GDP:

1-2%

- Mozambique: 2.77 3.87%
- Benin:

Implications of the findings $\dots/2$

- Vast potential for private sector to supply technologies
 - Silo prices can go up 7 times
 - Hermetic bag prices can go up 3 times
- Key issue is demand stimulation (e.g., social acceptability)
- Major barrier to adoption is initial investment cost

Recommendations

- PHM solutions should be country and context specific
- Disaggregate farmers by production & marketing behaviour
- Promoting PHLM Tech may require financial support
- Link repayment terms for PHLM credit to the payback period
- Blending instruments for financing PHLM can be considered

Recommendations .../2

- Potential role for import tax waivers on hermetic bags
- With 20-40% PHL:
 - Governments to balance investments (yields versus PHLM)
 - PHLM to be prioritised as import substitution strategy
- A case for PHLM to be included in farmer input programmes

• Multi-sectoral approach: *Agriculture-Plus PHLM Strategy*

Thank You!!

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Supported by

Swiss Agency for Development and Cooperation SDC

Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN)